Site Search:

Minimum Remove to Make Valid Parentheses

Problem

Given a string s of '(' , ')' and lowercase English characters. 

Your task is to remove the minimum number of parentheses ( '(' or ')', in any positions ) so that the resulting parentheses string is valid and return any valid string.

Formally, a parentheses string is valid if and only if:

It is the empty string, contains only lowercase characters, or

It can be written as AB (A concatenated with B), where A and B are valid strings, or

It can be written as (A), where A is a valid string.

Example 1:

Input: s = "lee(t(c)o)de)"

Output: "lee(t(c)o)de"

Explanation: "lee(t(co)de)" , "lee(t(c)ode)" would also be accepted.

Example 2:

Input: s = "a)b(c)d"

Output: "ab(c)d"

Example 3:

Input: s = "))(("

Output: ""

Explanation: An empty string is also valid.

Example 4:

Input: s = "(a(b(c)d)"

Output: "a(b(c)d)"

Constraints:


1 <= s.length <= 10^5

s[i] is one of  '(' , ')' and lowercase English letters.

Solution

We can use a stack to trace the balanced parentheses also use a Hashset to record the index of characters need to be removed.



/*
time complexity O(N)
space complexity O(N)
*/
import java.util.*;
class Solution {
    public String minRemoveToMakeValid(String s) {
        if(s == null || s.length() == 0)
            return s;
        Stack<Integer> paren = new Stack<>();
        Set<Integer> remove = new HashSet<>();
        StringBuilder sb = new StringBuilder();
        for(int i = 0; i < s.length(); i++) {
            char c = s.charAt(i);
            if(c == '(') {
                paren.push(i);
            } else if(c == ')') {
                if(paren.isEmpty()) {
                    remove.add(i);
                } else {
                    paren.pop();
                }
            }
        }
        if(!paren.isEmpty()) {
            while(!paren.isEmpty()) {
                remove.add(paren.pop());
            }
        }
        
        for(int i = 0; i < s.length(); i++) {
            if(!remove.contains(i)) 
                sb.append(s.charAt(i));
        }
        return sb.toString();
    }
}

The time complexity is O(N) we need to process each character.
The space complexity is O(N) we store at most N positions in the stack and set.