Site Search:

Peak Index in a Mountain Array

Problem:

Peak Index in a Mountain Array
Let's call an array A a mountain if the following properties hold:

A.length >= 3
There exists some 0 < i < A.length - 1 such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1]
Given an array that is definitely a mountain, return any i such that A[0] < A[1] < ... A[i-1] < A[i] > A[i+1] > ... > A[A.length - 1].

Example 1:

Input: [0,1,0]
Output: 1
Example 2:

Input: [0,2,1,0]
Output: 1
Note:

3 <= A.length <= 10000
0 <= A[i] <= 10^6
A is a mountain, as defined above.

Solution:

We can use binary search to find the peak. 

class Solution {
  public static void main(String...args) {
    int[] arr = new int[]{0,2,1,0};
    int r = solve(arr);
    System.out.println(r);
  }
  private static int solve(int[] arr) { //1 2 3 4 5 7 3
    int lo = 0;   //4
    int hi = arr.length - 1;    //6
    while(lo < hi) {
      int mid = lo + (hi - lo)/2;    //5
      if(arr[mid-1] < arr[mid] && arr[mid] < arr[mid+1]) {
        lo = mid + 1;
      } else if (arr[mid-1] > arr[mid] && arr[mid] > arr[mid+1]) {
        hi = mid;
      } else {
        return mid;
      }
    }
    return lo;
  }
}

The time complexity is O(logN) and the space complexity is O(1).