Problem
Merge k sorted linked lists and return it as one sorted list. Analyze and describe its complexity.
Example:
Input:
[
1->4->5,
1->3->4,
2->6
]
Output: 1->1->2->3->4->4->5->6
Solution
brutal force solution is to traversal all the linked lists, create an array, sort the array, then create a new linked list.
The time cost is O(NlogN), space cost is O(N)
we can also put the first k nodes into a priority queue, then take one at a time, push the next into the queue until done.
import java.util.*;
class KLinkedListsMerge {
public static Node merge(Node[] nodes) {
Node kHead = new Node(-1, null);
Node tail = kHead;
PriorityQueue<Node> pq = new PriorityQueue<>((i, j) -> i.value - j.value);
for(Node head : nodes)
pq.add(head);
while(!pq.isEmpty()) {
Node head = pq.poll();
if(head.next != null)
pq.add(head.next);
head.next = null;
tail.next = head;
tail = head;
}
return kHead;
}
private static class Node {
int value;
Node next;
public Node(int value, Node next) {
this.value = value;
this.next = next;
}
}
public static void main(String...args) {
Node[] nodes = new Node[3];
//1->4->5
nodes[0] = new Node(1, new Node(4, new Node(5, null)));
nodes[1] = new Node(1, new Node(3, new Node(4, null)));
nodes[2] = new Node(2, new Node(6, null));
Node head = merge(nodes);
head = head.next;
while(head.next != null) {
System.out.print(head.value + " -> ");
head = head.next;
}
System.out.println("null");
}
}
class KLinkedListsMerge {
public static Node merge(Node[] nodes) {
Node kHead = new Node(-1, null);
Node tail = kHead;
PriorityQueue<Node> pq = new PriorityQueue<>((i, j) -> i.value - j.value);
for(Node head : nodes)
pq.add(head);
while(!pq.isEmpty()) {
Node head = pq.poll();
if(head.next != null)
pq.add(head.next);
head.next = null;
tail.next = head;
tail = head;
}
return kHead;
}
private static class Node {
int value;
Node next;
public Node(int value, Node next) {
this.value = value;
this.next = next;
}
}
public static void main(String...args) {
Node[] nodes = new Node[3];
//1->4->5
nodes[0] = new Node(1, new Node(4, new Node(5, null)));
nodes[1] = new Node(1, new Node(3, new Node(4, null)));
nodes[2] = new Node(2, new Node(6, null));
Node head = merge(nodes);
head = head.next;
while(head.next != null) {
System.out.print(head.value + " -> ");
head = head.next;
}
System.out.println("null");
}
}
The time cost is bounded by the priority queue, the queue size is k after initialization, then add each element need logk time to restore the order. The total time cost is O(Nlogk). Space cost is the O(k) which is the priority queue size.
No comments:
Post a Comment